
REVIEW 
Modeling turbulent r irculating flows by 
finite-volume meth s--current status and 
future directions 
M. A. Leschziner 
Universi ty of Manchester Insti tute of Science and Technology, 
Manchester, UK 

Three-dimensional and recirculating flows of direct industrial relevance and realistic 
geometry are now well within the scope of CFD capabilities. However, none of the 
fundamental modeling issues, be it numerical or physical, can be said to have reached a 
degree of maturity for any particular practice to be perceived or accepted as a standard, 
and research continues at an unabated level along all fronts. This paper aims to outline 
the current status of some of the influential issues contributing towards any computational 
procedure based on the finite-volume approach and intended for modeling complex 
separated turbulent flow. The main areas covered are: discretization of convection, 
including bounding schemes, solution algorithms--specifically aspects concerned with 
maintaining spatial and intervariate coupling, geometric flexibility and turbulence modeling. 
The survey, however fleeting and superficial, indicates that current developments point 
towards the use of bounded quadratic approximations, multilevel (or multigrid) 
acceleration (for steady problems) and second-moment (Reynolds stress/flux) closures 
within the framework of nonorthogonal grids in which a Cartesian velocity decomposition 
is adopted. 
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I n t r o d u c t i o n  

There are few practically relevant flows which are free from 
recirculation zones or which are not profoundly marked by 
memory features reflecting the existence of such zones in some 
upstream region. Recirculation is often very extensive (Figure 
la) encompassing a major proportion of the domain and 
dictating the operational characteristics of the flow-containing 
devices; flows in cavities, in plenum chambers, between groynes, 
in IC-engine cylinders, jet-engine combustors and across heated 
or cooled rod bundles are but a few examples in which virtually 
no flow portion can be viewed as being divorced from the 
separation process. In other cases, recirculation is a more 
localized, less dominant feature (Figure lb); examples here 
include the vortex behind a weak sudden expansion or con- 
striction in a pipe, separation from the suction side of an airfoil 
at moderate incidence, recirculation in a moderately curved 
duct or pipe, the wake of a car body, and recirculation behind 
a low-velocity jet injected into a cross-flowing stream. 

However localized separation and recirculation might be, 
their effect on the overall behavior of the flow will, in general, 
be disproportionately important, as may be illustrated by the 
following examples, supplementing Figure lc: 

(1) the separation behind a small rearward-facing step will 
provoke a significant enhancement in the turbulence level 
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downstream of reattachment and hence strongly elevate the 
rate of mixing and wall heat-transfer level; 

(2) a small separation region on the suction side of an airfoil 
will strongly reduce its lift; 

(3) a modest amount of stall in a compressor cascade will 
seriously reduce the compressor's performance; 

(4) separation in the small recess region between the two 
elements of a "high-lift" airfoil arrangement will materially 
alter the structure of the unseparated boundary layer on 
the suction side of the rear element; 

(5) separation in a diffuser will drastically reduce, if not entirely 
nullify, its pressure-recovery performance; 

(6) the recirculation zone provoked by a baffle or swirl in a 
combustion chamber will dictate the efficiency of the 
combustion process--indeed, its detailed structure may well 
define the dividing line between satisfactory performance 
and catastrophic blowout; 

(7) local separation in a curved duct will significantly modify 
the cross-duct profiles of streamwise velocity at the duct's 
exit. 

The above list should suffice to justify the assertion that any 
computational approach to describing complex flows which 
contain regions of separation must yield an accurate represen- 
tation of the structure of these regions, be they extensive or 
localized. In some cases, the primary influence of separation 
on other parts of the flow could be described by capturing 
merely the location and size of the recirculation zone. However, 
it is unlikely that a procedure unable to model the structure of 
the zone adequately would yield its global characteristics. It is 
partly this requirement which makes the computation of 
turbulent recirculating flow a particularly challenging task. 

Although first numerical calculations of laminar separated 
flow hark back to the "stone age" of the CFD era, 
meaningful simulations of complex, high-Reynolds-number 
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flows emerged only towards the end of the 1960's, 5-s mainly 
as a result of computer hardware developments, the emergence 
of finite-volume approaches incorporating velocity/pressure 
staggering and stable upwind differencing for convection, and 
the formulation of practically applicable transport closures of 
turbulence based on the eddy-viscosity concept. 9'1° The results 
of these early efforts are still very much in evidence, for even 
a cursory search in recent journal issues and conference 
proceedings will readily yield a good crop of papers reporting 
k-s-model solutions for complex recirculating and swirling flows 
generated with the upwind or hybrid schemes 11"12 embedded 
in codes of the T E A C H - t y p e  13 or derivatives thereof. More- 
over, a number of commercial CFD codes, whilst offering 
impressive geometric flexibility are--in terms of numerics and 
turbulence modeling---often little removed from the original 
1970-75 techniques. Yet, this traditional route no longer typifies 
the current status, for the fruits of research over the past two 
decades directed towards formulating novel approaches as well 
as towards improving existing methodologies--in terms of 
numerical accuracy, geometric generality, solution efficiency 
and turbulence modeling--are being increasingly exploited in 
the practical environment; it is, in fact, the objective of this 
account to provide an overview, albeit a sketchy and incomplete 
one, of some recent developments in these areas. 

The emergence of finite-element (FE) algorithms and hybrid 
finite-element/finite volume (FE/FV) schemes for fluid flow (the 
latter for unseparated duct flow 14'~ 5) and their often "painful" 
extension to include transport models of the k-t-type ~6-23 is 
perhaps the most noteworthy novel feature in the CFD scene 

of the 1980's. Hutton, et al. 19 have chosen to convey the rate 
of progress of FE methods by means of Figure 2 which contrasts 
the number of papers dealing with FV and FE techniques and 
presented in two series of major biennial CFD conferences in 
the period 1980-1985. While this figure must be viewed with 
some caution, in that it ignores the type and complexity of 
flows tackled, it does nevertheless show a significant increase 
in the number of successful applications to turbulent flows, 
following the emergence of techniques, such as streamwise 
upwinding and Petrov--Galerkin discretization, which overcome 
the numerical instabilities provoked by the inclusion of k-s-type 
models within earlier purely Galerkin schemes. 

With the increasing importance of FE approaches having 
been pointed out, the remaining part of this paper restricts 
attention to the FV framework which still maintains a clearly 
dominant position in terms of the level of complexity of the 
physical processes routinely resolved. Efforts in this area have 
centered, principally, on nine main topics or issues: 

(1) the improvement of accuracy, mainly that associated with 
the approximation of convection by means of Eulerian and 
Lagrangian (time-space characteristics) approaches; 

(2) and related to (1), the introduction of boundedness into 
inherently oscillatory (usually higher-order) convection 
schemes; 

(3) a stable implementation of nonstaggered ("collocated") 
volume arrangements within primitive-variable and 
velocity/vorticity formulations; 

(4) the broadening of geometric flexibility by use of general 
orthogonal and nonorthogonal, structured meshes and 
zonal domain-splitting techniques; 

(5) grid generation including multi-block schemes and flow- 
adaptive meshes; 

(6) the increase in solution economy by use of coupled solvers, 
implicit time-marching techniques and multilevel/multigrid 
schemes; 

(7) the improvement of physical realism by use of second- 
moment closures in conjunction with improved wall laws 
and low-Reynolds-number near-wall models; 

(8) the development of procedures for shock- and geometry- 
induced separation in transonic and high-Math-number 
subsonic conditions, incorporating turbulence-transport 
models; 

(9) the extension and application of compressible-flow solvers 
(such as those based on the Beam and Warming and the 
MeCormack schemes) to incompressible or nearly incom- 
pressible conditions, in conjunction with the artificial 
compressibility concept. 
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Figure 3 Basic finite volume 

Within the constraints of the present coarse-grained overview, 
only some of the issues appearing in the above list can be 
addressed, and then only in a rather superficial manner. An 
inkling of just how superficial the coverage is bound to be, may 
be conveyed by picking out the topic of grid generation as an 
example and noting that Thompson et al., 24 when reviewing 
the subject in 1982, cite no fewer than 340 references; the current 
number must surely exceed double that number. What is 
attempted, therefore, in the following sections, always in the 
context of the finite-volume approach, is to convey a flavor of 
some recent developments and to speculate on future directions 
in four areas, namely: the approximation of convection, includ- 
ing bounding; handling of intervariate and spatial coupling, 
the latter principally by use of multilevel convergence accelera- 
tion; geometric flexibility and zonal domain-splitting; and the 
use of second-moment-closure methodologies. 

A p p r o x i m a t i o n  o f  c o n v e c t i o n  

Overview 

With attention focused, for simplicity, on the Cartesian finite 
volume shown in Figure 3, convection of any scalar flow 
property • manifests itself through the integral cell-face fluxes 
on the right-hand side of the following cell-integrated balance 
equation 

;,7; = - [(pU*)~÷ - (oUq))~_] dydt 

-f"+~ f f f  [(pV¢),÷-(pV¢)y_]dxdt 

+ Diffusion + Sources (1) 

If ~ denotes the average value of ¢ over the related cell face, 
Equation (l) simplifies to, 

f f :~+[(p¢)"+'-(p¢)"]dxdy 

j q t l +  1 

= - { [ ( p u ~ ) ~ +  - ( p u ~ S ) ~ _ ]  A y  
t m 

+ [(pVil}),+ - (p V~)y_] Ax} dt + . . .  (2) 

The task of a convection scheme is to provide approximations 
for the cell-face values in terms of neighboring nodal values at 
time levels n+  I, n, n -  I, etc. To this end, a system of nodes 
must be defined and located relative to the system of cells, and 
possible alternative arrangements are shown in Figure 4. Of 
these, the cell-centered form, (a), is by far the most popular, 
being extensively used for incompressible recirculating flow and 
being also applied to turbulent flow in which separation arises 
as a consequence of shock/boundary-layer interaction 2s-27. 
The cell-vertex arrangement, (b), 28-3° originally devised for 
inviscid transonic flow, has recently been adapted to shock- 
induced turbulent separation by Dimitriadis and I.tmehziner. 31'32 

Finally, arrangement (c) may be referred to, loosely, as the 
"upwinded control volume" method, and this has been proposed, 
as well as applied to multidimensional flows, by Moore and 
Moore. 33,34 

Although convection is represented by simple first-order 
derivatives (or flux differences) of the transported flow property, 
this simplicity is highly deceptive, and the approximation of 
convective transport remains one of the central, as yet unresolved 
issues of CFD. The problem is one of reconciling accuracy, 
stability, boundedness and algebraic simplicity. A somewhat 
oversimplified, yet essentially valid view of the conflict presenting 
itself is provided by the observation that stability and bounded- 
ness rely on some kind of diffusive "smoothing" mechanism, 
while accuracy relies on precisely the opposite, namely the 
absence of numerical smoothing. Numerical diffusion may be 
an inherent feature of the approximation, being the result of 
leading even-order truncation errors. The most prominent class 
of approximations which "exploits" this mechanism to the 
extent of achieving unconditional boundedness and stability (in 
a linear sense) is that based on first-order upwinding, applied 
in any multi-dimensional situation as a superposition of one- 
dimensional, mesh-line-directed forms, rather than in a stream- 
line-directed manner. This class includes the Exponential 
Scheme, X a the Power-Law Differencing Scheme x 2 and the Hybrid- 
Differencing Scheme (HDS), 11 the last incorporating the pure 
Upwind Scheme. The very mechanism responsible for stability 
and boundedness in the above approximations also results in 
second-order artificial cross-flow diffusion, which can be highly 
damaging to solution accuracy when high shear rates combine 
with low grid-line density and a significant degree of flow-to- 
grid skewness. 

The role of grid-line density is an important one to highlight 
in the above context, for artificial diffusion can be depressed 
to an insignificant level, thus becoming an irrelevant issue, 
provided the internal distances (and with these, the cell- 
Reynolds number) are made sufficiently small; indeed, in such 
circumstances, second-order central differencing can be used 
without fear of instability and significant "wiggles," whether in 
a transient or steady-state framework. The obvious obstacle to 
this route is expense, not only in terms of storage but also in 
terms of solution (CPU) time which tends to rise as N =, where 
N is the number of nodes and ~ is of order 2 to 3. When all 
that is required is the steady-state solution, this obstacle can 
be lowered, if not removed, by use of the multilevel technique, 
and this will be the subject of a separate section below. However, 
when transient features are to be resolved accurately, time- 
stepping at a spatially invariant interval corresponding to a 
maximum Courant number not far in excess of unity is 
unavoidable, in which case the use of highly dense grids is an 
extremely costly proposition. Here, parallel processing, by 
means of transputer arrays, for example, seems to offer an 
increasingly promising relief route, and applications to quite 
complex flows are beginning to emerge, as'a6 

The multilevel (or multigrid) technique, while holding great 
promise in store, is still very much in its infancy in the 
context of recirculating-flow computations, particularly for 
three-dimensional configurations where storage restrictions 
prevent the use of the high grid node densities at which CPU 
savings significantly exceed the overheads associated with 
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Figure 5 Interpolated value at "west"-face of cell: (a) HOUS; (b) 
QUICK; (c) SUDS 

inter-grid-transfer operations. The principal route thus followed 
over the past two decades towards achieving an acceptable 
compromise between accuracy and stability at economically 
tolerable grid densities has been via a wide variety of (nearly) 
nondiffusive approximation schemes. The approaches adopted 
fall, essentially, into one of the following six categories: 

(1) higher-order upstream-weighted collocation or skew- 
upwind schemes for steady-state problems without 
bounding; 

(2) schemes under (1) in conjunction with oscillation-damping/ 
bounding algorithms; 

(3) locally analytic schemes for steady-state problems; 
(4) higher-order collocation and osculating schemes combined 

with Lagrangian, time-space characteristics approaches; 
(5) higher-order osculating (compact) schemes for steady-state 

problems; 
(6) second-order centered schemes combined with fractional 

time-step methods, second-order/fourth-order smoothing, 
flux limitation a7 or "Total Variation Diminishing" (TVD) 
schemes, as.a9 

The order adopted above is intended to broadly reflect the 
frequency of use in general recirculatory conditions and, more 
specifically, in turbulent flows. It should be pointed out, 
however, that many applications have not been made within 
the finite-volume context, and these do not, therefore, justify 
more than a cursory mention in the present account; indeed, 
schemes in the last two categories will not be considered herein. 

Unbounded higher-order and skew schemes 

With conventional first-order upstream-weighted formulations 
left aside, schemes in this group have formed the basis for 
the majority of the more recent steady recirculating-flow 
computations reported in the literature. Approximations 
figuring most prominently are the second-order upwind scheme 
(HOUS), 4°'41 the quadratic upstream-weighted interpolation 
scheme (QUICK), 42 and the skew-upwind differencing scheme 
(SUDS). 43 The manner in which the three schemes approximate 
any cell-face value is indicated graphically in Figure 5. 

A large number of studies have been reported, particularly 
since 1980, in which the characteristics of the above schemes 
have been systematically investigated and compared to simpler 
first-order approximations. 44-57 Most studies confine them- 
selves to linear steady convection/diffusion problems and laminar 
flows, the latter being mainly lid- and thermally-driven cavity 
flows and, in one case, an impinging-jet flow. 53 Leschziner and 
Rodi 4s have, however, extended their considerations of QUICK 
and SUDS to two-dimensional recirculating jet flows computed 
with the k-e eddy-viscosity model, while Han et  al. 46 focus on 
QUICK's performance in a turbulent cavity flow. A further 
noteworthy study is that of Demuren, ss in which QUICK has 
been compared to the first-order hybrid scheme in the context 
of computations for 3-D turbulent jets injected into a cross flow. 

While no categorically clear-cut verdict can be extracted from 
the wide variety of cases examined, there is a fair degree of 
consensus that QUICK gives, overall, the best performance, 

and it is this scheme which appears to be increasingly used 
for complex two- and three-dimensional turbulent-fow calcu- 
lations, sg-s2 Some contradictory conclusions emerge from 
studies of Vanka, 5~ Shyy 5° and Castro and Jones 56 on the 
second-order upwind scheme, with Vanka observing a perfor- 
mance not greatly superior to that of the first-order variant and 
Shyy and Castro reporting much more favorable performance 
characteristics. Shyy and Braaten s3 have consequently adopted 
the second-order scheme in their later three-dimensional turbu- 
lent-flow calculation. All schemes are found to yield unbounded 
solutions with the skew scheme tending to produce the largest 
oscillations and observed tO perform badly in cavity flow. 53 
Different versions of the skew scheme have been applied to 
turbulent flows by Boysan e t  al. ,  s4 E1 Tahry s5 and Benodekar 
et  al. ,  s6 the last two adopting bounded versions. 

Some final brief comments are appropriate in this section in 
relation to the computation of transient flow. Calculations for 
turbulent recirculating flows combining collocation schemes of 
the type considered here (i.e., other than those of the first-order 
upwind variety) with statistical models of turbulence are rare 
(Refs. 85 and 67), both relating to IC-engine cylinder flow. A 
larger number of applications can be found, however, in 
situations in which instabilities, in the form of periodic vortex 
shedding and large turbulent eddies, were to be resolved at 
moderately high Reynolds numbers with the aid of high-order 
schemes. Recent calculations of vortex shedding behind square 
obstacles using QUICK in conjunction with a Lagrangian or 
an Euler-implicit approximation in time have been reported by 
Davis and Moore, s7 Davis et  al . ,  s s  Durao and Pereira s9 and 
Franke and Schfnung, 9° the last study extending to circular 
cylinders. Takemoto and Nakamura 91 used a QUICK/Adams- 
Bashforth scheme to compute three-dimensional transient 
features in circular bends, resolving Taylor--G6rtler-type vortices. 
Applications of third-order upstream-weighted approximations 
somewhat akin to QUICK within LES schemes have been 
reported by Kawamura et  al . ,  92 Kawamura and Kuwahara 93 
and Kuwahara and Shirayama, 94 although here a more usual 
approach is to adopt second-order central differences in con- 
junction with multi-time-step schemes, such as the Adams- 
Bashforth method. 

In summary, if recent trends are taken to indicate future 
developments then the above considerations point to an 
increasing dominance of upstream-weighted collocation schemes 
of formal order 3 (in uniform mesh). The tendency of these 
schemes to produce unphysical oscillations at high cell Peclet 
numbers is generally perceived as being the schemes' most 
serious limitation and disadvantage. However, a number of 
alternative approaches to limiting or removing oscillations, with 
no significant penalty to accuracy, have been formulated 
recently--a topic to which attention is directed next. 

Bounding schemes for collocation approximations 

The observation that the collocation schemes considered in the 
previous section give rise to unphysical oscillations has led to 
efforts aimed towards constructing composite schemes which 
achieve an acceptable compromise between accuracy and 
boundedness. It is of some importance to point out here that 
the oscillations in question are not simply undesirable from a 
fundamental or cosmetic point of view, but can also prevent 
convergence (towards the exact numerical solution) when the 
schemes are applied to turbulence-transport equations, for these 
cannot generally tolerate the negative values arising for tur- 
bulence energy and dissipation as a consequence of oscillations 
at the lower edges of high-gradient regions. 

Most approaches to bounding are based either on switching 
from one scheme to another or truncating the range of 
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interpolation, subject to certain criteria, or on a selective 
blending of the oscillatory scheme with a diffusive first-order 
scheme.* Other practices, specifically used in supersonic- and 
transonic-flow, Euler solvers, involve the explicit introduction 
of second-order and fourth-order diffusion to counteract shock- 
induced oscillations in the unbounded scheme 97'9s or the 
construction of special upwind schemes based on the "Total- 
Variation-Diminishing" concept ;38,39,98 these practices will not 
be pursued here, therefore. 

Composite schemes of the first type have been proposed 
by Gaskell and Lau, 72 Leonard 99'1°° and Hassan et al. ~°1 
Leonard's method switches between QUICK, an upwinded 
exponential scheme (involving a fit of an exponential function 
to three nodes, one of which being shifted in the upstream 
direction) and the first-order upwind scheme, depending upon 
the ratio ( ~ u - ~ v v ) / ( ~ o - ~ v v ) ,  where U, U U  and D identify 
upstream, remote-upstream and downstream nodes, respectively, 
relative to the cell face being considered. Gaskell and Lau, 72 in 
contrast, switch between QUICK, the second-order upwind 
and the first-order upwind approximations. Both composite 
schemes are shown to perform well, though, at the time of 
writing, Leonard's scheme appears to have been tested only 
for a one-dimensional Euler solution and two-dimensional 
convection of a scalar discontinuity. 

Blending schemes have been proposed by Chapman, 1°2 Lai 
and Gosman 1°3 (see also Refs. 85, 86, 104). All schemes 
essentially mix the unbounded approximation with a proportion 
of the first-order upwind scheme according to: 

=7~¢) i + ( 1 - y ~ ) ~  (3) (i)i (P) (u) 

/=cell faces; P="parent" ;  U="upwind"  

The methods vary in the manner in which the weighting factors 
~i are determined. Zhu and Leschziner,104 for example, combine 
QUICK and the upwind scheme, requiring positiveness of the 
primary coefficients linking any one node to its four immediate 
neighbors. An important overriding constraint is, however, that 
no mixing is introduced when the solution varies monotonically, 
regardless of the sign of the primary coefficients. This condition 
is satisfied by a continual examination of the local solution at all 
nodes and a comparison of nodal values with their surrounding 

* It is interesting to observe here that some flux-correction schemes aT'gs 
adopt the reverse path, namely that of first producing a diffusive 
solution and then introducing a carefully measured "antidiffusive" flux. 
A somewhat related method by Dukowicz and Ramshaw 9s introduces 
cross-flow antidiffusion as part of the approximation scheme itself. 

neighbors. Mixing is implemented only if a local oscillation is 
detected. That this simple practice is effective is demonstrated 
in Figure 6, which shows test calculations for scalar convection, 
with and without a source. A very similar performance is 
observed in nonlinear conditions, and the method has also been 
applied successfully to turbulent flows. 

The generally favorable behavior displayed by some of the 
above blending schemes, combined with their simplicity, gives 
rise to the expectation that turbulent-flow algorithms, particu- 
larly those employing advanced multiequation turbulence- 
closure models within complex three-dimensional domains, are 
likely to increasingly opt for some bounded version of the 
QUICK scheme. 

Locally analytic methods 

The concept of this class of methods rests on the observation 
that an accurate, unconditionally bounded scheme for a one- 
dimensional convection/diffusion problem can be obtained by 
solving analytically the equation, 

dO F d2(I) 
pU ~-x = • dx ~ (4) 

between any two  nodes, w i th  the ( local) bounda ry  condi t ions 
being the nodal values. It is this approach which gives rise to 
the well-known Exponential  Scheme. 11 The advantages of this 
locally exact scheme's accuracy are lost in two- and three- 
dimensional conditions, however, when it is applied to each 
coordinate direction separately, with the resulting scheme 
arising as an additive summation of the componential contri- 
butions. In such a case, the scheme deteriorates to a level 
comparable to that of the upwind approximation at high cell 
Peclet numbers. 

A proper generalization of the above approach to multi- 
dimensional flows is possible, and has been proposed by Stubly 
et al. l°s and Chen and Li)  °6 In both cases, an approximation 
scheme is constructed by performing an analytic integration of 
the two- or three-dimensional linear (or linearized) transport 
equation over a small region with local boundary conditions 
around the area prescribed with the aid of functional fits to 
nodes lying on the area's (volume's) circumference. In two- 
dimensional cases, the resulting approximation scheme is a 
9-point weighted-average formula with the weighting factors 
(referred to as "influence coefficients") being somewhat compli- 
cated functions of the nodal values entering the local boundary 
conditions. Recent applications of this method to recirculating 
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flow, both laminar and turbulent, have been reported by Chert 
e t a / . ,  1°7 Chert and Chert, l°s Chert and Yoon, 1°9 Chert et  al. ,  11o 
Choi and Chert 111 and Piquet and Visonneau.112 The accuracy 
of the scheme is generally impressive, but not uniformly so, as 
shown by test calculations contributed to a performance 
comparison conducted by Smith and Hutton. 47 Moreover, the 
algorithmic complexity of the method has severely impeded its 
widespread use, and extensions to three-dimensional conditions 
are very rare.1 ~2 

An interesting approach attempting to combine the simplicity 
of the one-dimensional analytic solution with the accuracy of 
the much more complex multi-dimensional generalization has 
been proposed by Wong and Raithby.113 As before, the starting 
point is the two-dimensional linear transport equation, but 
written here as an iterative two-level approximation, 

This then is a quasi one-dimensional equation with the right- 
hand side evaluated from the previous iteration. In the next 
iteration, the x- and y-directed terms are interchanged. 

The performance of this scheme has been examined by 
Prakash 114 for linear cases and by Huang et  al. 53 for both 
linear and nonlinear conditions. For linear tests, the scheme 
was found to yield impressively accurate solutions, but for 
nonlinear conditions Huang et  al. encountered serious numerical 
stability problems preventing full convergence. 

Lagrangian techniques 

In cases where transient features are to be resolved accurately 
and economically, higher-order spatial approximations are of 
little use unless accompanied by accurate temporal formulations. 
For example, any attempt to combine the QUICK scheme with 
an Euler-implicit approximation would not be much superior 
to first-order upwinding in resolving transients, because the 
second-order temporal truncation error arising from the Euler 
scheme is, essentially, equivalent to a spatial diffusion term. 

Approximate factorization schemes such as ADI offer some 
advantages here, but schemes based on the use of time-space 
characteristics are much more attractive from a fundamental 
point of view, for they mimic transient convection precisely if 
the spatial variation is represented without error. Schemes of 
this type have been formulated and applied by Glass and 
Rodi, 11s Leonard, ~16 Davis and Moore, s7 Casulli, 117 Viollet 
et  al.,11 s Dewagenaere et  al. 119 and Nasser and Leschziner. t 2o 
Glass and Rodi's scheme is an explicit, nonconservative, 
scalar-transport approximation based on an earlier proposal 
by Holley and Preissmann.~ 21 Leonard's proposal is essentially 
a combination of QUICK and the explicit characteristics 
scheme, while Davis and Moore's method is its two-dimensional 
extension. The method of Nasser and Leschziner 12° is perhaps 
the most advanced, in that it employs cubic splines and 
upstream- weighted osculating polynomials in conjunction with 
an approximate factorization (ADI-type) scheme incorporating 
time--space characteristics which are constructed from velocity 
information on both the forward and backward time levels. 
This scheme has been applied to scalar convection, steady and 
transient cavity flows and vortex-shedding phenomena. Its 
performance is demonstrated for pure scalar convection in 
Figure 7 which shows the transport of a scalar Gaussian cone 
by a rotational velocity field. As can be seen, there is virtually 
no attenuation or spread of the initially prescribed field. 

The future prospects of Lagrangian schemes for general 
flows are uncertain. Their main drawbacks are complexity, 
unboundedness (arising from the spatial interpolation) and the 
fact that they presume strong convective dominance--a con- 
dition which is often not satisfied in highly turbulent conditions, 
particularly within slow-moving recirculation zones. It is the 
writer's view that preference will be given to traditional methods 
combining bounded higher-order collocation schemes with 
approximate factorization methods. 

C o n v e r g e n c e  a c c e l e r a t i o n  

Convergence, used here in the sense of the approach towards 
the exact numerical solution of the discretized equation set, is 
a meaningful concept principally in the context of steady-state 
solutions.* Such solutions may be obtained either with time- 
marching schemes (often with spatially varying time intervals) 
or with iterative algorithms. In the former group, convergence 
acceleration is synonymous with an increase in the permitted 
forward step size, leading to fewer time steps, while in the latter, 
acceleration means a decrease in the number of iterations. 

The rate of convergence is essentially dictated by the degree 
of intervariate and spatial coupling maintained by the solution 
algorithm in question. Complete coupling can only be achieved 
for linear equation sets, in which case the direct solution would 
lead to the desired result in one sweep. Invariably, the set to 
be solved is nonlinear, however. Following its linearization (e.g., 
via a generalized Newton-Raphson approach), full coupling 
would involve, in a two-dimensional framework, the repeated 
inversion of an N x N block matrix with each block being K x K 
in size, where K is the number of variables. Such an approach 
is too costly in practice, and a partially or fully uncoupled, 
segregated methodology is almost invariably resorted to (one 
notable exception is the approach of Vanka122-t24). 

Except for a few velocity/vorticity formulations, 125-127 
vorticity/vector-potential techniques 12s.lz9 and artificial-corn- 

* The concept can also apply to transient cases, however, if an implicit 
(unfactorized) scheme is applied, in which case an iterative solution 
sequence must strictly be performed within any one time interval. Also, 
in incompressible flows, such in-step iteration is required to satisfy 
the mass-continuity constraint. 
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pressibility approaches, ~3°-z32 the large majority of recent 
applications involve the use of velocity/pressure or velocity/ 
pressure-correction algorithms (the once popular vorticity/stream- 
function method is rarely used now). In some cases--almost 
invariably laminar--a partially coupled solution is adopted 
with the momentum and pressure (or continuity) equations 
solved simultaneously in a point-wise or line-implicit (block 
ADI-type) manner./22-124,133-137 An interesting variant in 
which compact groups of four neighboring nodes are treated 
implicitly, while intergroup coupling is handled iteratively, is 
presented by Satofuka. 13s 

Most recirculating-flow schemes--and virtually all those 
applied to turbulent flow--employ uncoupled schemes, however, 
involving a sequential solution for velocity components and 
pressure. Such an approach naturally tends to slow down 
convergence (although an implicit solution is not always 
superior in terms of resource requirements 13 a), and a significant 
number of pressure-coupling schemes have been devised in 
an effort to enhance convergence. Prominent examples are 
SIMPLE, 139 SIMPLER, 14°, SIMPLEST, l'tz SIMPLEC, 142 
PISO, la3'l't't SNIP 145 and P U M P I N )  46 Performance com- 
parisons involving subsets of these algorithms have been 
reported by Latimer and Pollard,l't7 Jang et al.~4s and Huang, 6° 
but no clear consensus can be claimed to have emerged on the 
algorithms' order of efficiency. PISO appears to perform best 
in laminar conditions, both steady and transient, but experience 
in turbulent-flow conditions does not, generally, suggest dramatic 
advantages over the simplest scheme, SIMPLE. 

The degree of spatial coupling between nodal values is the 
second important issue affecting economy of solution. A high 
degree of coupling can, in principle, be achieved by use of 
ADI-type schemes, Stone's strongly implicit scheme (or variants 
thereof) 149'~5° and a variety of preconditioned conjugate- 
gradient methods.151-153 In practice, particularly when complex 
systems of five and more coupled, nonlinear, partial-differential 
equations are to be solved, none of the methods is spectacularly 
more efficient than others. The application of Stone's method 
and preconditioned conjugate-gradient schemes specifically to 
the pressure or pressure-correction equation does tend to pay 
some useful dividends, but the effectiveness of both approaches 
declines seriously when these are applied to the Navier- 
Stokes equations. The conjugate-gradient method suffers from 
sensitivity to preconditioning which is problem-dependent, 
while Stone's method is adversely affected by its sensitivity to 
the values of iteration parameters which must be chosen with 
little guidance from theoretical considerations. 

A technique which is beginning to emerge as a generally 

L eschziner 

powerful and highly economical convergence accelerator in 
recirculating flow is the multilevel method originated by 
Brandt.Zs4. The method is based on the observation that the 

short wave-length Fourier components of the solution-error 
vector, present in any iterative solution of a linear set ot 
algebraic equations, decay much faster than the long waves. 
Since the shortest waves are two mesh intervals long, this 
observation suggests that a high rate of error decay would be 
achieved if the iterative relaxation of the residuals were to be 
carried out on successively coarser meshes, followed by a reverse 
transfer towards the finest mesh to achieve the desired accuracy. 
The method is well established for single-variable systems and 
has also been fairly extensively used to accelerate time-marching 
Euler solutions for compressible f l o w .  2 9 ' 3 0  The efficient 
application of the method, in its nonlinear form as a "full 
approximation scheme" (FAS), to recirculating flows is still 
in its infancy. Applications within the staggered, primitive- 
variable approach have been reported by Sivaloganathan 
and Shaw, 156'157 Gaskell e t a / . ,  15s Fuchs, 159 Phillips and 
Schmidt, 16° Phillips et al., ~61 Miller and Schmidt, 162 Vanka t36 
and Thompson and Ferziger, z63 while nonstaggered cell- 
centered arrangements have been considered by Arakawa et 
al., T M  Barcus et a l )  65 and Beeri and Leschziner) 66 In most 
cases, typical acceleration factors for lid-driven cavity flows at 
Re = 100 computed with grid sizes of order 64 x 64, is of order 
20, as is demonstrated by Figure 8, though this factor decreases 
with increasing Reynolds number. Very recent, as yet unpub- 
lished efforts indicate that the method's effectiveness carries 
over to highly skewed nonorthogonal, nonstaggered arrange- 
ments) 67 Further applications within streamfunction/vorticity 
schemes have been presented by Ghia et al.~6s'~69 and Schr6der 
and H/incl. : °  The use of point-coupled multilevel schemes, 
employing block Gauss-Seidel relaxation, appears to yield a 
further significant convergence acceleration (factor 2 to 3), 
as demonstrated by Vanka 136 and Arakawa et al. 16'~ The 
obvious next step up the ladder of implicitness is the imple- 
mentation of the multilevel method as a block-ADI or block- 
line-Gauss-Seidel solver, and first efforts in this direction 
have already been reported by Hutchinson et a l )  ~ and 
Napolitano. ~ 72 

The crucial question which has yet to be answered with any 
degree of confidence is whether the dramatic gain in efficiency 
observed for laminar flows carries over to turbulent conditions. 
Recent results by Phillips et al. 161 are somewhat disappointing, 
but as yet unreported work by Scheuerer et al.t ~ 3 indicates that 
a proper implementation of the Full Approximation Scheme 
in conjunction with the k-e model yields substantial savings in 
resources here too. This conclusion is supported by recent work 
of Dimitriadis and Leschziner 174 who have applied multigrid 
acceleration to shock-induced separation in a turbulent flow 
computed with a cell-vertex scheme and three variants of 
the k-e model. As an example, Figure 9 demonstrates the effect 
of increasing the number of grid levels from one to four on the 
rate of decline of the average, normalized density residual in a 
turbulent transonic flow over a bump. 

G e o m e t r i c  f l e x i b i l i t y  

Lack of geometric flexibility and adaptability is frequently 
claimed by FE protagonists to be a decisive disadvantage of 
the FV approach. There can be no argument,  of course,  about 
the very high level of flexibility offered by the unstructured 

* A technique developed by Hutchinson and RaithbylSS--termed the 
Additive Correction Strategy--is closely related to the multigrid 
method (see also Hutchinson et al)?l).  
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nature of FE discretization, particularly when use is made of 
higher-order dements. However, great strides have been made 
over the past decade towards narrowing the gap between FV 
and FE strategies, and in many complex geometric applications 
structured FV techniques easily stand their ground when 
compared to FE schemes in terms of geometric adaptability 
alone. Moreover, efforts are in progress to construct un- 
structured FV strategies offering the same level of flexibility 
as the FE method. Leaving these ongoing, as yet largely 
unpublished efforts aside, developments have progressed along 
three main fronts: 

(1) algebraic and differential grid generation, including flow- 
adaptive control; 

(2) discretization and solution of transport equations within 
general-orthogonal and nonorthogonal grids, using both 
staggered and unstaggered grid systems; 

(3) domain-decomposition (multi-block)'and coupling tech- 
niques. 

The subject of grid generation is huge and defies an even 
superficial overview within this account (for wide-ranging 
reviews see Refs. 24, 175, 176). This proliferation is perhaps 
partly rooted in the fact that generating a complex grid involves 
the application of well-defined mathematical techniques, while 
solving the flow-governing equations is often a more difficult 
task, particularly if the set solved includes turbulence-transport 
equations. 

Structured grids, suitable for FV computations, may be 
generated by algebraic or differential transformation equations. 
The latter technique is more widespread as it enables the 
automatic generation of smooth orthogonal or nonorthogonal 
grids. Such grids arise from solving, numerically, pairs (or 
triples in 3-D) of Poisson-type equations which govern the 
variation of the physical (metric) coordinates (x, y) in terms of 
transformed coordinates (~, r/) which form a rectangular grid. 
The nonhomogeneous parts of the equations can be used to 
exercise a significant level of grid control, in terms of disposition 
and local density, and the nature of boundary conditions 
applied (Dirichlet or Neumann) dictates whether the grid is 
orthogonal or not. The generation process described above 
becomes difficult in the case of multiply connected domains or 
when complex "finger-like" multi-zone domains are to be 
covered, particularly when these are three-dimensional. In such 
circumstances, block or zonal grids may be generated separately 

and coupled in an iterative manner while the generation within 
the blocks is in progress. Examples of this technique in complex 
two-dimensional cases are presented by Kadja 59 (orthogonal 
meshes) and Hfiuscr e t  al . ,  177 while grids composed of as many 
as 37 separate blocks in three-dimensional geometries are 
reported by Thompson. 17s 

However sophisticated grid-generation capabilities might be, 
their usefulness clearly rests on the level of their utilization in 
fluid-flow solvers. Here again, rapid progress has been made 
over the past few years. Recent computations of two-dimen- 
sional turbulent recirculating flows with curved-orthogonal 
grids and Reynolds-stress closures have been reported by 
Kadja, 59 Leschziner et  al. t79 (using composite, zonal meshes), 
and Jones and Manners; ts° many more two-dimensional, 
orthogonal-grid applications making use of eddy-viscosity 
models are sprinkled in the literature and will not be mentioned 
here. Calculations with two-dimensional nonorthogonal grids 
and the k-e model have been presented by Shyy, 52 Demirdzic 
et  al. ,  144 Peric, lsl Vu and Shyy, 182 Rodi e t  al. l s3  and Agouzoul 
et  a/.lea--the last two making use of a nonstaggered cell 
arrangement. Much progress has also been made to broaden 
substantially the geometric scope of FV techniques for three- 
dimensional applications, with general recirculating-flow pro- 
cedures being formulated by Burns e t a l . ,  74 Shyy and Braaten, s3 
Takemoto and Nakemura, 9t Dewagenaere e t  al . ,  ~19 Peric, T M  

Maliska and Raithby, ~s5 Kwak et  al., ~s6 Reggio et  al. ,  1s7 
Reggio and Camarero, lss Demirdzic, ls9 Rodi et  al., 19° 
Leschziner and Dimitriadis, ~9~ Hoholis and Leschziner, ~7 and 
Coupland and Priddin. 192 Some schemes, such as the last two, 
employ curved-orthogonal grids in two dimensions with the 
third coordinate being cylindrical-polar. This obviously restricts 
their geometric capabilities, but the level of physical modeling 
embedded in them is especially high (in respect of turbulence, 
mass transfer and cold chemical reaction or combustion); 
indeed, the scheme of Hoholis and Leschziner has now been 
extended by Lin and Leschziner s t to include a second-moment 
turbulence-transport closure, and has been applied, with QUICK 
approximating convection, to swirling combustor flows. Most 
other procedures employ nonorthogonal mesh systems, though 
in the scheme of Leschziner and Dimitriadis nonorthogonality 
is only permitted in one plane. Here again, however, this 
particular scheme possesses a special feature not found else- 
where, namely a domain-decomposition capability, as indicated 
in Figure 10. The figure provides a simple illustration of the 
zonal approach (in terms of flow modeling, not simply grid 
generation) which is set to substantially broaden further the 
geometric scope of FV-calculation methodologies. The area is 
still in its infancy, but impressive progress is reported by 
Glowinski e t a l .  193 (in the FE context), Meakin and Street ~94 
and Shaw et  a l . t  9 s The last reference suggests, in fact, that multi- 
block calculations of flows around entire aircraft using dozens, 
if not hundreds, of blocks are about to become possible. 

Turbulence closure 

At present, the large majority of industrial flow computations 
make use of the eddy-viscosity concept to relate the turbulent 
stresses and fluxes to the mean flow. In most cases, the eddy 
viscosity is obtained from the turbulence energy k and its rate 
of dissipation 8, which are, in turn, extracted from transport 
equations containing convective, diffusive, generative and dissi- 
pative contributions. Such an approach is attractive on numerical 
grounds: a viscosity formulation--and the second derivatives 
of the diffused property that go with it---offers the opportunity 
to construct, within an implicit approach, a "composite" 
discretization scheme in which diffusion is coupled to con- 
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vection, thereby strongly promoting stability. Moreover, the 
equations contributing to the viscosity model are relatively easy 
to code and solve. Viscosity formulations are far less attractive 
on physical grounds, however, for they do not perform well in 
flows in which body forces--arising from strong curvature, 
recirculation, swirl and buoyancy--play an important role. 
Such body forces are known to interact selectively with different 
normal and shear stresses--principally via anisotropy-promoting 
stress generations and opposing isotropization processes--and 
this selective, or rather discriminatory influence cannot be 
captured by use of a model which relates all stresses to the 
mean field by a single isotropic parameter. The fact that some 
essential elements of the interaction between curvature and 
turbulence can only be explained by reference to the individual 
stress-generation terms 62 leads to the conclusion that any 
turbulence model expected to yield a high degree of generality 
must be based on equations describing the processes affecting 
the balance of each Reynolds stress (and, if appropriate, flux) 
separately; it is this approach which is steadily gaining momen- 
tum and seems set to progressively erode the predominance of 
simpler eddy-viscosity approaches. 

Exact forms of such equations--the Reynolds-stress and 
flux-transport equations---can be derived by taking velocity- 
weighted moments of the Navier-Stokes equations and 
combining these with the Reynolds equations; similar manipu- 
lations applied to the scalar-transport equation lead to the flux 
equations. 196'197 Adopting, for clarity, a simple descriptive 
representation, one may write the stress and flux equations in 
the following form: 

Convection (u~.) = Diffusion ( ~ )  + Production (u~.) 

+ Pressure-strain (u~u~)- Dissipation ~ )  

Convection (uic) = Diffusion (uic) + Production (uic) 

+ Pressure-scrambling u(~c)- Dissipation (u~) 

In the above equations, when written in their full mathematically 
correct form, convection and, most importantly, production 
need not be modeled, for both only contain mean-flow quantities 
and the stresses (or fluxes) themselves. The remaining terms 
however, contain higher-order moments (for example, triple 
correlations of the form ~ and p d u / ~ x )  or indeterminable 
correlations such as the product of strain fluctuations. It is this 
which necessitates approximations to be postulated if the stress 
and flux equations are to be closed at second-moment level. 
Of course, these approximations are certain to introduce errors 
into the equations, thereby diminishing their capabilities. Yet, 
the expectation is that the retention of the exact production 
terms for each stress, coupled with reasonably good modeling 

proposals for diffusion, pressure-strain and dissipation, would 
ensure a high level of generality. 

Applications of stress models to relatively simple curved and 
buoyant boundary-layer-type flows t 9s.199 have, indeed, shown 
that the models return the correct response to the anisotropy- 
promoting agents. Evidence which has emerged from studies 
on much more complex recirculating flows is not always 
conclusive or consistent, partly because of significant differences 
in geometry and boundary conditions, and partly as a conse- 
quence of different model variants being used. In a number of 
cases, 2°°'2°1 the response of the solution to the turbulence 
representation has been completely masked by numerical errors 
provoked by the use of the first-order upwind approximation 
within a hybrid central/upwind-differencing scheme for con- 
vection. These errors are particularly damaging in the context 
of stress closures which do not naturally yield diffusivity- 
containing second-order terms enabling the central-differencing 
part of the hybrid scheme to operate without loss of iterative 
stability. The absence of such numerically stabilizing terms 
appears also to have seriously hindered the use of stress closures 
in combination with accurate, numerically nondiffusive dis- 
cretization schemes. However, a variety of stability promoting 
measures s5'2°2 and the use of time-marching has enabled the 
recent application of stress closures to a fair range of two- 
dimensional recirculating flows, including some with very 
strong swirl, density variations and combustion. 63-65 The use 
of stress closure in three-dimensional recirculating flows is very 
much in the initial stages. 8°'sl 

Recent stress/flux-closure calculations for 2-D flows have 
been reported by Kadja, 59 Huang, 6° Leschziner, 61'62 Hogg and 
Leschziner, 63-65 Fu et  al. 66 Jones and Marquis, 6s MeGuirk 
et  al . ,  69 McGuirk and Papadiminitriou, 7° Prudhomme and 
Elghobashi, 71 Gaskell and Lau, 72 Weber e t  al . ,  76 Kim and 
Chung, 77 Boysan et  al. ,  s* E1 Tahry, s5 Leschziner e t  al . ,  179 
Jones and Manners, is° Sindir, 2°3 Fu et  al. ,  2°* Yap, 2°5 
Amano, 2°6 Amano and Goal, 207.20s Sloan et  al., 2°9 and 
Truelove and Mahmud. 210 First applications of stress closures 
to shock-induced separation have been presented by Benay e t  
al. 25 and Vandromme and HaMinh. 26 

A lengthy discussion would be required at this juncture to 
point out common features and differences arising from the 
various studies referred to above, and to identify probable roots 
for defects. Moreover, any differences would need to be carefully 
put in relation to the particular closure variant and near-wall 
treatment adopted, as well as to a host of numerical issues, and 
this for every group of flows having similar geometric and flow 
characteristics. Clearly, such an endeavor would go beyond the 
framework of the present brief survey. A general conclusion 
emerging, however, is that flows which are dominated by large 
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recirculation zones and/or are subjected to strong swirl tend 
to derive the greatest benefits from stress closures. 

In order to give a flavor of the possible level of response to 
a switch from the k-e to a stress closure, results are shown 
below for three geometries: 

(1) a plenum chamber into which a jet is injected centrally, 
creating a large recirculation zone which occupies a major 
proportion of the solution domain; 2t~ 

(2) an expanding annular passage bounded by an axially 
movable stepped and shaped center-body which is suspended 
in a diffuser, imparting a severe adverse pressure gradient on 
the f l o w ;  2 1 2  

(3) a strongly swirling annular flow, injected together with a 
nonswirling central jet into a circular pipe .2ta Comparisons of 
calculated solutions with experimental data are shown in 
Figures 11-13 and have been taken from Huang and Lesch- 
ziner, 2°2 Leschziner et al., 179 and Hogg and Leschziner, 6a 
respectively, where RSTM denotes stress-transport closure and 
ASM identifies an algebraic approximation thereof. All show 
strong sensitivity to the turbulence model, suggesting a strong 
interaction between turbulence and streamline curvature which 
results in a marked attenuation of turbulence transport. The 
plenum flow is characterized by a large central recirculation 
zone which is driven by a strongly curved wall jet. The 
orientation of curvature in the shear layer bordering the central 
region, relative to the primary shear strain normal to the 
streamlines is such that turbulence activity is attenuated. As 
seen from Figure 11, the consequences are a steepening of 
velocity gradient and a dramatic reduction in turbulence-energy 

level. A similar process is responsible for the significant enlarge- 
ment of the recirculation zone in Figure 12, with the predicted 
reattachmcnt point being moved close to that observed experi- 
mentally at X/H = 10. The fact that agreement between ASM- 
computed and measured pressure recovery is good in this case 
may be taken as an indication that the shape of the recirculation 
zone is correctly represented. The intense interaction between 
swirl and turbulence is illustrated in Figure 13 which relates to a 
strongiy-swirling "subcritical" vortex-tube flow. Here, swirl is 
so intense that the shear-stress field essentially collapses, leading 
to ncar-inviscid conditions (although a significant level ot 
turbulence energy persists). The eddy-viscosity model, being 
unable to account for curvature, returns, in contrast to the 
stress closure, a solid-body-type swirl-velocity field indicative 
of an excessive level of diffusive transport. 

A final example, shown in Figure 14, is intended to give a 
qualitative indication of the current status of stress modeling 
in complex geometries and flow conditions. The geometry 
is part of a combustor model, examined experimentally by 
Koutmos, 214 into which a swirling flow is introduced through 
the left inlet plane. Dilution jets are injected radially, entraining 
swirling fluid and leading to a rapidly rotating vortex at the 
center-line whose structure and axial variation strongly affect 
the axial center-line velocity. Figure 14c contrasts velocity 
variations obtained by Lin and Leschziner s t with two approxi- 
mations of convection, two grids and two variants of stress- 
transport closure, within a curved-orthogonal finite-volume 
framework. The variant identified by IPCM is one in which the 
pressure-strain component in the stress model--that responsible 
for isotropization by an appropriate redistribution of turbulence 
energy among the three normal-stress components--is related 
not only to stress production but also stress convection. T M  

The result is a model which, in contrast to established versions, 
is invariant to coordinate rotation--a property which is of 
particular importance in swirling flows. This new model was 
found by Fu et al. 2°4 to be superior to the version denoted by 
RSTM in strongly swirling two-dimensional flows, and its 
superiority is also reflected by the three-dimensional application 
considered in Figure 14. 

While stress closures are observed to bring about notable 
improvements in predictive accuracy, it must be said that 
differences between calculations and measurements are seldom 
reduced to insignificant levels, indicating that model defects 
remain. The models for the isotropizing pressure-strain inter- 
action and the (isotropic) dissipation are known to be major 
contributors to observed errors. Both model components 
are subjects of current turbulence-modeling research at 
UMIST, 2°4'21s'216 and new proposals have shown promise 
when applied to simple free and near-wall flows; their use in 
recirculating flow can be expected to follow in the not too 
distant future. 

C o n c l u d i n g  r e m a r k s  

The paper cannot claim to have provided more than a bird's 
eye view of some of the influential issues contributing to the 
calculation of complex turbulent flows by the finite-volume 
technique. Notwithstanding, a number of general trends can 
be detected which are likely to set the scene of industrially- 
related CFD for the next few years. 

• There is clearly an increased awareness that geometric 
complexities must be addressed, and this appears to be 
increasingly done within the framework of structured non- 
orthogonal grid strategies and a Cartesian (rather than 
mesh-line-oriented) velocity-vector decomposition. There is 
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switch from k-e to Reynolds-stress-transport model = 

also a trend towards domain-decomposition techniques for 
covering very complex domains which cannot be effectively 
handled by a single structured grid. While emerging un- 
structured strategies will undoubtedly find their way into 
industrial applications, it is unlikely that they will oust 
structured approaches altogether, if only because the latter 
offer simplicity and ease of solution. 

• Diseretization of convection in physically complex conditions 
appears to be increasingly based on QUICK-type schemes, 
with bounded versions becoming more widespread. This 
trend is likely to continue. 

• Multilevel convergence acceleration looks very promising 
indeed and is being investigated intensively. Very recent 
results for turbulent flows are encouraging, and it can be 
expected that this technique will become a standard con- 
stituent of fluid-flow codes, provided skewness and complex 
turbulence models are not found to decisively erode the 
method's efficiency. The utility of the technique for three- 
dimensional flows is, at present, limited by lack of memory 
resources, hindering the use of dense meshes in all three 
coordinate directions. 

• There is a clear trend towards the use of second-moment 
(Reynolds-stress) closures, particularly in flows dominated 
by recirculation zones and/or subjected to swirl. Such 
models are very complex and resource-intensive, yet none 
is a panacea. Developments in this area, including such 
related to the interaction between turbulence, combustion 
and multiphase mixtures, are likely to be slow and to retard 
the progress of CFD as a truly predictive technique for 
industrial applications. 

• Parallel computing by means of large arrays of processors 
may yet turn out to be the joker in the pack. A possible 
scenario, perhaps around 1995, is that highly efficient 
parallel-FORTRAN compilers would replace the transputer- 
oriented language OCCAM, enabling large codes using fine 
grids to be executed cheaply with little attention needed to 
be paid to solver efficiency or order of accuracy. 
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